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maps computed with equation (3). The NRC Crys- 
tallographic programs (Ahmed, Hall, Pippy & Huber, 
1966) and ORFLS were used in the computations. The 
data were collected on a Picker FACS-1 System with 
molybdenum radiation (graphite monochromator). 
This work was supported in part by grant MA-3406 
to M.N.G.J. from the Medical Research Council of 
Canada and in part by the National Research Council 
of Canada grant (A-172) to R.U. Lemieux for support 
to L.T.J.D. 
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The direct method for determination of the stacking sequences of periodic polytypes has been success- 
fully applied to the calculation of structural characteristics of stacking-faulted lattices built up of transla- 
tionally equivalent layers. From the intensity distribution along row-lines of indices h -  k :/: 3n on oscilla- 
tional X-ray patterns rc'(m,p) sets were calculated, which give the relative rate of occurrence of the re- 
lated stacking vectors. Formulae are derived for calculating cyclicity, hexagonality and the relative rate of 
occurrence of four-layer stackings using the ~z' (m,p) values. It is shown that this method may be used also 
to determine directly the e and fl fault parameters used by Jagodzinski. 

Introduction 

Because of the practical importance of materials with 
structures built up of translationally equivalent layers, 
several theories and methods have been worked out 
since the early days of X-ray diffraction methods to 
make possible the characterization of their faulted 
structures (Warren, 1941; Hendricks & Teller, 1942; 
Gevers, 1952, 1954; Kakinoki & Komura, 1952; Pater- 
son, 1952; Johnson, 1963; Allegra, 1964; Sato, 1966, 
1969; Kakinoki, 1967; Lele, Anantharaman & John- 
son, 1967; Holloway, 1969; Lele, 1969; Lele, Prasad 
& Anantharaman, 1969; Lele & Rama Rao, 1970; 
Prasad & Lele, 1971). These methods, however, are 
all indirect, assuming random distribution of stack- 
ing faults. Moreover, most theories suppose the pres- 
ence of only one type of stacking fault in the lattice. 
One method without the latter restriction is that of 
Jagodzinski (1949a, b, c). Assuming a random stacking- 
fault distribution and an interaction range of three 
interlayer spacings ('Reichweite=3'), he determined 
the effect of this type of disorder on the intensity dis- 
tribution of scattered X-rays. His method was partly 
based on earlier work of Landau (1937) and Wilson 
(1942). Jagodzinski's two-parameter model was further 
developed and applied to some practical cases, mostly 

for the characterization of faulted ZnS structures by 
Mfiller (1952) and Singer & Gashurow (1963), who 
achieved, however, a reasonably good fit between cal- 
culated and photometrically measured intensity curves 
for random stacking fault distribution only. Even in 
these cases the use of the method was rather tiresome 
since, being an indirect method the calculation of a set 
of master curves was needed to find the best fitting 
curve whose parameters may be characteristic of the 
structure. 

We encountered the problem of characterizing 
lattices with stacking faults when investigating the 
structure of a great number of ZnS crystals. These crys- 
tals have been widely investigated because of their in- 
teresting polymorphic modifications. But, as has been 
shown by many authors (Mfiller, 1952; Brafman, Shach- 
ar & Steinberger, 1965; Verma & Krishna, 1966), these 
crystals (the natural ones and also those grown by diffe- 
rent methods)only seldom have a completely regular 
structure. Besides the high-temperature hexagonal, the 
low-temperature cubic, and the numerous polytype mod- 
ifications, the structure of the majority of the crystals 
contains many stacking faults. In such regions the 
Zn-S double layers of hexagonal symmetry are stacked 
perpendicularly to the hexagonal c axis (i.e. the cubic 
[l 1 l] direction) in such a manner that neighbouring 
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layers are always related to each other by a transla- 
tion of + ½ of the lattice distance along the orthohex- 
agonal b axis (i.e. the [1]0] axis of the hexagonal lat- 
tice), but in most cases their stacking has no regularity 
or periodicity. The same is valid for SiC and for many 
other crystals built up of translationally equivalent 
layers. 

The experimental observation that in many cases it 
is not possible to obtain a good fit between intensity dis- 
tributions measured on X-ray patterns and those calcu- 
lated by indirect methods, corresponds to our X-ray and 
electron diffraction investigations carried out on a 
great number of ZnS crystals. They proved that 
in many cases these structures do not contain faulted 
hexagonal or cubic regions, but rather a number of 
differently faulted polytype regions, frequently having 
very small dimensions parallel to the c axis, but occupy- 
ing the whole diameter of the crystal perpendicular to 
it (Fig. 1). Even when the intensity distribution 
of patterns which seemed to be of a stacking-faulted 
cubic or hexagonal crystal were measured, the curves 
obtained along the row line h, k, /with h - k 4: 3n showed 
few periodic peaks apart fom the hexagonal or cubic 
reflexions (Fig. 2). These periodic maxima correspond to 
a faulted polytype lattice. From another point of view, 
however, this lattice can be regarded as a structure whose 
faults are no longer randomly distributed; a fault 
migration occurs which is almost periodic. 

These experimental observations, and the lack of a 
relatively simple method which could characterize all 
kinds of faulted structures, not only those with ran- 
dom stacking faults, led to the idea of applying the 
direct method for this purpose, which was originally 
elaborated for the structure determination of ZnS-like 
polytypes. 

Changes in the definition of quantities used in the direct 
method for stacking-faulted lattices 

The basic features of the above-mentioned polytype 
stacking sequence determining method, given in detail 
by Farkas-Jahnke (1966), Dornberger-Schiff & Farkas- 
Jahnke (1970), Farkas-Jahnke & Dornberger-Schiff, 
(1970), are the following: 

(1) It uses a new notation for polytypes: a binary of 
N digits. N is the number of Zn-S double layers in one 
period. These layers could be translated into each other 
by either of the two translational vectors, al (-½,½, l /N) 
or a0 (½, -½,1/N).  The row of the indices of the trans- 
lational vectors constitutes a binary of N digits, which 
is periodic in the case of periodic polytypes (e.g. the 
notation of the 6H polytype in this system is 
111000 . . . ) .  

(2) It employs the so-called 'stacking vectors', i.e. 
vectors with coordinates (m,p) connecting identical 
points in double layers p steps apart, related to each 
other by the translation m/3 along the orthohexagonal b 
axis (possible values m=O, + 1). 

(3) It introduces a new function, the rc(m,p) Patter- 

son-like function. The values of this function, differing 
from zero only at points of integer (m,p) coordinates; 
give the number of stacking vectors of coordinates 
(rn,p). 

(4) When using our method, the periodic structure 
is regarded as being built up of structure elements con- 
sisting of p +  1 layers. It is obvious that the notation 
of these structure elements in the '10' system is a 
binary of p digits. ( p +  1 layers are connected by p 
translational vectors.) There exists a close connexion 
between the position of identical points in the first and 
last layer, respectively, in the structure element 
and the coordinates of the related stacking vector. The 
whole translation of the lattice during p steps in the 
direction b is congruent with the m coordinate of the 
stacking vector (m,p), i.e. the translation = m (mod 3) 
(in Ib[/3 units) (Fig. 3). 

(5) The procedure for structure determination of 
periodic polytypes is the determination of the rate of 
occurrence of longer and longer structure elements re- 
cursively. It is clear that even the rates of occurrence 
of 'short' sequences (i.e. sequences consisting of a few 
layers only) are very characteristic of the structure. 
(The structure elements of length p will be denoted by 
7p, and their rate of occurrence by [7],.) 

This recursive nature of the procedure also enables 
us to make use of it in cases when, in the absence of 
real periodicity, a full determination of the structure 
is not possible. 

These ideas could be easily applied to structures with 
stacking faults (Farkas-Jahnke, 1968). The binary nota- 
tion of a one-dimensionally disordered structure will 
obviously be an almost infinite row of l 's and O's. The 
stacking vectors also have their original meaning in 
this case. The first difficulty arises for the n(m,p) func- 
tions; while lacking real periodicity they cannot 
have any meaning for the stacking-faulted lattice. It is 
possible, however, to overcome this difficulty by in- 
troducing a 'relative' Pattersonian function, 
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Fig.2. Blackening distribution measured along the 01/ row- 
line of the X-ray pattern of a crystal with faulted structure. 
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Fig. 1. (a) Oscillation X-ray diffraction pattern of a stacking-faulted ZnS crystal. Oscillation axis parallel to the c axis. Cu K~ 
radiation. (b) Reflexion electron diffraction pattern of a ZnS crystal containing stacking-faulted polytype regions. 80 kV elec- 
trons, c axis of the crystal perpendicular to the electron beam. 
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Fig. 6. Measured intensity distributions, X-ray patterns and calculated best fitting Jagodzinski-typ¢ curves for (a) a faulted 
hexagonal crystal, (b) a faulted cubic crystal, (c) a faulted polytype crystal. 
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z~'(m,p)= zc(m,p)/N (1) 

which is now the relative number of occurrences of the 
stacking vector (m,p), not only within one period, but 
in the whole region in question. (N is the number of 
layers per period in a polytype and the number of 
layers in the investigated region of a faulted crystal.) 

The faulted lattices as well as the lattice of periodic 
polytype are built up of structure elements of length 
p (denoted by 7p) except that their occurrence lacks any 
periodicity this time. Therefore we have to modify 
our former definition of the rate of occurrence of such 
structure elements, [7]p, in a way similar to that used 
for the zffm,p) functions. Only the relative rate of oc- 
currence, 

[~]; =[el . IN (2) 

which is equal to the relative number of stacking 7p 
in the whole region in question, can be used for faulted 
structures. 

Calculation of n(m,p)from the intensity distribution of 
a pattern made from a crystal with stacking faults 

After introducing these new definitions for z((m,p) and 
[7]9 a more serious problem arose: the calculation of 
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Fig. 3. Relation between the coordinates of the stacking vector 
(m,p) and the whole translation of the lattice during p 
steps. 

zc(m,p), i.e. zc'(m,p) values for a stacking-faulted struc- 
ture. In a periodic polytype it is defined by the equation 

N [  tN-1 IS(0,1,l)l 2 ] 
zc(m,p)=~ 1 + 2  ~ N2 cos2z~(m/3+lp/N) 

l=O 

(3) 

where IS(0,1,012 can be determined from the struc- 
ture factors of reflexions along the row-line (0,1,1) using 
the relation 

IF(h,k,l)l z 
IS(h,k,l)12= iFo(h,k,l)lZ (4) 

where Fo(h, k, l) denotes the known structure factor of 
one double layer. 

In the case of stacking-faulted crystals, reflexions 
along row-lines for which ( h - k ) ¢ 3 n  are no longer 
separated, but are connected by a diffuse line of vary- 
ing intensity. So, it is not clear what should be sub- 
stituted for IS(0, 1,1)12 in equation (3). 

To overcome this difficulty we arrived at the follow- 
ing idea: choosing a value for N, we measured the 
blackening of the diffuse line at those points where a 
polytype of period length N would have given reflexions. 
Using equations (3) and (4), we obtain a set of n(m,p) 
values. If using different N values the n'(m,p) sets ob- 
tained do not differ very much, the set of mean 
values of these n'(m,p)'s can be accepted as charac- 
teristic of the stacking-faulted structure in question. 
In most cases the choice of N is obvious because of 
the periodicity of the small peaks on the diffuse lines. 
An example for such sets calculated from the black- 
ening distribution shown in Fig. 2, choosing N =  24 and 
54 is given in Table 1. 

Cyclicity, hexagonality and four-layer stackings in 
non-periodic structures 

Already from the set of ~'(m,p)'s useful information 
can be derived about the properties of a stacking-faulted 
structure. According to their definition ~(1,1) and 
~ ( -  1, 1) give the whole number of l 's and O's, i.e. the 
number of translations al and a0 in a periodic poly- 
type. ~z'(l, 1) and 2z'(-1,1) supply us with the corre- 
sponding relative values for the investigated region in 
a faulted crystal. 

The difference ~z(1,1)-~z(-1,1) is equal to the so- 
called 'cyclicity' of a periodic polytype, i.e. the trans- 
lation of the lattice parallel to the direction of the 

Table 1. zg(m,p) values calculated from the same intensity distribution 

N =  24 N--  54 

p m - 1  0 +1  - 1  0 +1  

1 0.501 - 0.002 0-501 0.488 0.238 0.488 
2 0-350 0"301 0.350 0"377 0-247 0.377 
3 0.256 0.490 0"256 0.244 0.512 0"244 
4 0"366 0.268 0.366 0.371 0.258 0.371 
5 0"372 0"256 0"372 0"379 0-243 0"379 

A C 29B - 3* 
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orthohexagonal b vector during one period. In accor- 
dance with this the value n ' (1 ,1) -n ' ( -1 ,  1) gives the 
'relative cyclicity' of a faulted lattice. In the case of 
symmetrical fault distribution, i.e. if the occurrence 
rate of an individual structure element does not change 
when replacing the l 's by O's and vice versa, this 
cyclicity value is equal to zero. This corresponds to 
equal probability of lattice shifts in the directions b 
and - b .  In this case the diffraction patterns of crystals 
with both periodically and non-periodically stacked lat- 
tices are symmetrical about the equator. It has to be 
mentioned that in the majority of the cases we obtain 
such patterns from stacking-faulted crystals. 

Also the rate of occurrence of two-layer structure ele- 
ments can be completely determined using the calcu- 
lated n'(m, 2) values. As in the case of periodic polytypes 

n ' ( -  1,2)=[111' 

n'(1,2) = [00]' (5) 
and 

n'(0,2) = [10]' + [01]' = 2[10]'. (6) 

This means that the relative rate of occurrence of the 
two cubic sequences, '11' and '00' and of the two 
hexagonal sequences, '10' and '01' may be directly cal- 
culated. The quantity [10]'+[01]' is the so-called 
'percentage of hexagonality', e, also widely used to 
characterize polytypes of faulted structures (Braf- 
man & Steinberger, 1966; Nelkowski & Pffitzenreuter, 
1971). 

As demonstrated, our method is suitable for deriv- 
ing ~ from the measured intensity data by calculating 
n'(0,2) in the above-mentioned way. 

Already, the possibility of direct determination of 
hexagonality is very useful in practice, i.e. when trying 
to find correlation between structure and some physical 
properties of faulted crystals. However, our method 
offers a more advantageous possibility: the direct de- 
termination of the relative rate of occurrence of struc- 
ture elements built up of four layers (three sub- 
sequent stackings) could be achieved. 

Using the recursion formulae derived originally for 
periodic polytypes (Dornberger-Schiff & Farkas- 
Jahnke, 1970), in a somewhat modified form, the con- 
nexion between the relative rate of occurrence for 
sequences of lengths 2 and 3 is obtained: 

[a t  a2] ' =  [at a2 0] '  + [at a2 1]' 

[at a2]'=[0 al a2]'+[1 at a2]' (7) 

(here at denotes 1 or 0 and [at . . .  ap]'=[at . . .  ap]/N). 
Using these equations, together with relations (5) and 
(6) between the n'(m, 2) and [at a2]' values and between 
n'(m, 3) and [at a2 aa]' values: 

[000]' +[111] '=n'(0,3) 

[001]' + [010]' + [100]' = n ' ( -  1,3) 

[011]' + [101]' + [110]' = n'(1,3), (8) 

it is easy to derive the equations for the [at a2 a3]'  values. 
These formulae are given in Table 2. 

Table 2. Formulae for  [)]3 values 

[000]' = n'(1,2) + ½n'(0,2) - ½[n'(1,3) + 2n'( - 1,3)] 
[001]' = ½[n'(1,3) + 2n'( - 1,3)] - ½n'(0,2) 
[010]' = n'(0,2) - ~-[2n'(1,3) + n'( - 1,3)] 
[011]'= {[2n'(1,3) + n ' ( -  1,3)]- ½n'(0,2) 
[100]' = [0011' 
[101]' = n'(0,2) - ½[n'(1,3) + 2n '(  - 1,3)] 
[110]'= [011]' 
[111]' = n ' ( -  1,2) + ½n'(0,2) - ½12n'(1,3) + n ' ( -  1,3)] 

Thus by using the experimental data it is possible 
to determine directly not only the hexagonality value 
of the structure but also the relative rate of occurrence 
of four layers stacked in the cubic sense and even the 
relative rate of occurrence of all possible four-layer 
stackings. 

The connexion between the fault parameters a and p 
used by Jagodzinski and the rate of occurrence of three 

and four-layer staekings 

At this point in discussing the suitability of our method 
for the determination of stacking-fault probabilities in 
the ZnS structure (and in all structures built up of trans- 
lationally equivalent layers) we have to show that by 
determining [712 and [7]3 in a direct way we obtain the 
same result in characterizing the faulted structure as is 
achieved by the most frequently used indirect methods, 
for example the method of Jagodzinski. 

For this purpose we deduce the connexion between 
[y]~ and n'(m,p) values used in our method and the 
fault parameters a and fl used by Jagodzinski (1949a, 
b,c). 

According to Jagodzinski, the hexagonal stackings 
of three subsequent layers - 10 or 01 in our notation - 
are denoted by h, and the cubic stackings - 11 or 00 - 
by k. The probability that a fourth layer will be 
stacked in a cubic sense following a hexagonal stack- 
ing is denoted by c~, and when following a cubic stack- 
ing by/f. Thus the probability of two subsequent hex- 
agonal stackings is (1 -c0,  and that of a hexagonal one 
after a cubic stacking is (1 - f l )  (see Fig. 4). (We should 
mention that the fault parameter ~ used by Jagodzinski 
is different from that used for denoting hexagonality 
by other authors.) 

Denoting by [h]' and [k]' the probabilities (i.e. the rela- 
tive rates of occurrence) of hexagonal and cubic stack- 

h k 

k h k h 

Fig.4. Probability of the possible four-layer stackings ac- 
cording to Jagodzinski. 
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ings, respectively, in the structure, we may write the 
following equations: 

[h]' = [01]' 4- [I0]' = 2 [01]' = re'(0,2) 
and 

[k]' = [00]' 4- [11]'. (10) 

The equation 
[h]'4- [k]'= 1 (11) 

is obviously satisfied. 
For the probabilities of four-layer stackings the fol- 

lowing equations are valid 

[hh]' =[h]' ( 1 - ~ )  = [010)' 4-[101]' (12a) 

[hk]' =[h]' c~ =[011]' 4-[100]' (12b) 

[kh]'=[k]' (1-f l )  =[OO1]' + [l lO]' (12c) 

[kk]'=[k]' fl= (1 - [h]') fl= [000]' 4- [111]' 
=zg(0,3).  (12d) 

From equation (12d) we get 

zg(0,3) (13) 
fl= 1 - r e ' ( 0 , 2 )  " 

If the three-layer stackings are followed by a fourth 
layer, the following recursion formulae are valid for 
their relative rates of occurrence: 

and 

[01]' = [010]' +[011]' (14a) 

[01]' = [001]' +[101]' (14b) 

[10]'= [100]' +[101]' (15a) 

[10]' = [010]' +[110]'. (15b) 

Since [10]' =[01]', from (14b) and (15a) it follows, that 

[100]' = [001]' 

and from (14a) and (15b) that 

[011]'=[110]'. 

Using these results we obtain from (12b) and (12c): 

[h]'a= [k]' ( I - f l ) = ( 1 - [ h ] ' ) .  ( 1 - f l ) ,  (16) 

and with formula (13), 

1 - z~'(0,2)- zc'(0, 3) 
~ -  re'(0, 2) (17) 

Consequently, by using our method it is possible to 
determine, if desired, the parameters ~ and fl by a 
very simple calculation, and by using these parameters 
to obtain the best fitting Jagodzinski-type curve. 

This fact can be useful for determining whether the 
approximation used in our method when replacing 
IS(0, 1,/)] z in equation (3) by the values derived from 
intensities at discrete points in the continuous distribu- 
tions is allowable. Intensity distributions were calculated 
according to the formulae of Jagodzinski for various 
and fl parameter pairs. Using a value of 48 for N, 
rd(m,p) sets were calculated according to equation (3), 
and from these ~' and fl' values were derived by equations 
(13) and (17). The difference between the starting and 
final values of ~ and fl was in all cases less than 2 %. 
Some of these c~ and/3 pairs are given in Table 3. 

This little experiment proved two things: firstly that 
our method of approximating IS(h,k,l)l z values of the 
discrete reflexions by those calculated from the blacken- 
ing of the continuous diffuse lines at adequate points 
is allowable, and the error caused by that approxima- 
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Fig. 5. Some characteristic intensity distribution curves, calculated along the 011 line of the reciprocal space according to the theory 
of Jagodzinski. 
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Table 3. Starting and final values of  fault parameters 
and fl 

Values of ~ and fl Maximal 
Starting Calculated error 

/~ ~ /~ % 

0-15 0"65 0.1500 0.6498 0.20 
0.30 0"45 0.2999 0.4500 0.04 
0.75 0"25 0-7497 0.2497 0-12 
0.95 0-50 0.9500 0.4999 0.02 

tion is certainly not larger than that of the calculated 
a and fl values. 

Secondly, we got back in all cases as parameters of 
the best fitting curve the starting ct and fl values (within 
the limits of the error), i.e. the starting intensity dis- 
tributions. Thus we may conclude that by using our 
method it is possible to determine the c~ and fl param- 
eters of the best fitting Jagodzinski-curve for any mea- 
sured intensity distribution. 

It also allows the possibility of demonstrating the 
limits of Jagodzinski's method in practice. As men- 
tioned in his papers Jagodzinski (1949a, b,c) 
takes into consideration when determining the 
intensity distribution formula only interactions of 
'Reichweite'=3, i.e. interactions between layers sep- 
arated by more than four interlayer spacings are ne- 
glected. Consequently, curves calculated with the aid 
of his formula are rather smooth, as shown for some 
special cases in Fig. 5, unlike most experimental curves. 
This is probably the reason why the fitting of experi- 
mental curves to the Jagodzinski-type master curves 
succeeded only in a few special cases (Mfiller, 1952; 
Singer & Gashurov, 1963). 

In Fig. 6, three intensity distribution curves mea- 
sured along the enclosed X-ray oscillation patterns are 
given, together with their best fitting Jagodzinski- 
curves. The ~ and/3 parameters for these were deter- 
mined using equations (13) and (17) by the method 
described above. The Figures show that adequate fitting 
was obtained in case (a) only, where the investigated 
structure was a faulted hexagonal one. In case (b), 
where the investigated region contains, besides the 
faulted cubic, a faulted 6H structure as well, the Jago- 
dzinski-curve describes the two cubic-type maxima, but 
none of the 6H peaks. In the third case, where the pat- 
tern was made of a faulted polytype structure of long 
periodicity (where interactions between layers at a 
distance apart greater than 4 interlayer spacings are 
present) even the best fitting Jagodzinski-curve fails in 
following the greatest maxima of the real intensity dis- 
tribution. 

C o n c l u s i o n s  

Unlike numerous authors who have made great 
efforts to characterize various stacking-faulted struc- 
tures using indirect methods, we chose a direct way 
for solving the problem. As we have shown above, the 
method used for the determination of the structure of 

periodic polytypes might also be succesfully applied in 
a slightly modified form for determining characteristics 
of faulted, non-periodic stackings. 

Using this method it is possible to calculate directly 
from the measured intensity distribution of diffuse 
lines along row-lines h - k  v~ 3n the relative rate of oc- 
currence of stacking vectors, and from these values the 
cyclicity, hexagonality and the relative rate of occur- 
rence of the various four-layer stackings in the inves- 
tigated region of the lattice. From these values the 
fault parameters required for indirect methods might 
also be derived, if necessary. The maximum error in 
the determination is not more than 1%. 

The possibility of determining of the relative 
rate of occurrence of different structure elements has 
useful practical applications. For example, with the 
aid of this method it is possible to explain the results 
of some physical experiments, i.e. to find the relation 
between certain physical properties and the structure 
of the faulted crystals, and further to reveal the range 
of interaction influencing the property investigated. 

Another interesting area of application is the inves- 
tigation of the changes in the structure due to heat 
treatment or mechanical deformation. By recording a 
set of diffraction patterns during the course of such 
processes the mode of transformation may be deter- 
mined. Results of investigations of both these possi- 
bilities will be published shortly. 

The author would like to thank Professor K. Dorn- 
berger-Schiff for many helpful discussions. 
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A method is given for calculating fault parameters in lattices built up of translationally equivalent layers 
with interactions between five subsequent layers, i.e. the relative rate of occurrence of five-layer struc- 
ture elements in such lattices. Based on a method outlined in part l, formulae are derived for the deter- 
mination of these characteristic values from the data of X-ray patterns with symmetrical or asymmetri- 
cal intensity distribution. The validity of the method is tested on model structures. 

In part I of the present work (Farkas-Jahnke, 1973) a 
method was described for the determination of fault 
parameters, or more precisely relative rates of occur- 
rence of structure elements in lattices, where the planes 
lying perpendicular to one crystallographic axis can 
be transferred into each other by one translation. From 
the intensities of diffuse lines along row lines whose 
Miller indices satisfy the inequality h -  k ~-3n, the rate 
of occurrence of structure elements consisting of three 
or four subsequent layers, [7]'2 or [7]a, can be deter- 
mined by using a direct method. 

Even by using these fault parameters a number of 
practical problems can be solved, for example in cases 
where the investigated physical property of the mate- 
rial depends on the hexagonality or on the relative rate 
of four-layer cubic stackings in the lattice, but for 
many other practical applications the determination 
of fault parameters taking into account interactions be- 
tween layers at greater distances would be desirable. 
Such a problem is the investigation of the course of 
phase transformations either during heat treatment 
(Farkas-Jahnke, 1971) or due to mechanical forces. 
Even the determination of the range of interaction in 
lattices would be possible by the determination of rate 
of occurrences of longer structure elements (Dorn- 
berger-Schiff, 1972). 

Because of the difficulties outlined in the next sec- 
tion, the determination process is somewhat difficult 
even for five-layer elements. In the present paper we 

give a solution of the problem; the concept applied can 
be extended later to determine fault parameters in 
longer structure elements. 

The calculation of [7]~ values for p > 3 

As we have shown in the case of periodic polytypes, 
[7]'p values, i.e. relative rates of occurrences of struc- 
ture elements consisting of p + 1 layers can be derived 
for any p using the recursion formulae and the equa- 
tions valid between n(m,p) and [7]~, values (Dornber- 
ger-Schiff & Farkas-Jahnke, 1970). In this case, how- 
ever, the values of the Patterson-like function, ~(m,p) 
and [7]p, could only be integers, according to their defi- 
nition. Although the number of equations is less 
than that of the unknown [7]p's, the integer nature of 
the quantities yielded a possibility of determining [7]p 
values even for p > 3, if the measurement of the inten- 
sities were accurate enough. 

Up to p = 3 it was not necessary, however, to make 
use of the integer nature of these quantities. The num- 
ber of equations (the recursion formulae and the rela- 
tions between zffm,p) and [7]p values together) is large 
enough to allow us to calculate [7]2 and [7]3 sets directly. 
As we have already shown (Farkas-Jahnke, 1973), up 
to this step the [711, = [7]p/N values can also be calculated 
directly (Table 2 in part I), the same type of equations 
being valid for this case as for periodic polytypes. 
But as we have seen these [7]~,'s are no longer integers; 


